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Abstract 

 

This paper introduces a remedy to the criticism frequently voiced against data visualization and exploration: 
that it may give rise to an over-interpretation of random patterns. A way to overcome this problem is the 
realization that “visual discoveries” correspond to the implicit rejection of “null hypotheses”. The basic idea of 
visual inference is that graphical displays can be treated as "test statistics" and compared to a reference 
distribution of plots under the assumption of the null. Visual inference helps us answer the question “Is what 
we see really there?” By so doing, it seeks to overcome long-standing reservations against visualization as 
merely “informal” approach to data analysis and the fear that beautiful pictures may in fact not correspond to 
any meaningful patterns of substantive scientific interest. The paper illustrates the application and benefits of 
this visual method by drawing on examples from political research.  
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Introduction 

 

Data visualization is an indispensable tool for political science research. Few methods are 

better able to uncover and communicate structure in quantitative data. Next to the 

compelling presentation of statistical results and quantities of interest (Jacoby & Schneider 

2010, Kastellec & Leoni 2007, King et al. 2001) statistical graphics are used as analytic tools for 

various purposes and at various stages of the data analysis (Jacoby 1997a, 1997b, 2000, Bowers 

2004, Bowers and Drake 2005, Gelman 2003, Gelman and Hill 2007, Kerman et al. 2008). Based 

on an analysis of all articles published in the American Journal of Political Science between 

February 2003 and March 2018, Figure 1 demonstrates that graph use has dramatically 

increased in political science over the last fifteen years. 1  Whereas the average political 

science article in the discipline´s flagship journal contained roughly one (.92) graphic in 2003, 

graph use has grown to an average of three and a half (3.58) graphics per article in 2018. 

 

 

Figure 1: Average Number of Figures in all Articles Published in the AJPS, 2003-2018. 

 

                                                
1 I use figure count as a preliminary proxy for graph count. Of course, not every figure is necessarily a graphic. 
I am currently in the midst of classifying all figures and based on a random sample of roughly 700 figures I found 
that roughly 10 percent are not data visualizations. 
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Despite the widespread use of graphs and the clear benefits of turning abstract data 

structures into visible patterns, a long-standing reservation against data visualization holds 

that it is merely an “informal” approach to data analysis (cf. Best et al. 2001, Healy & Moody 

2014). The fear expressed in this view is that beautiful pictures may not correspond to any 

meaningful patterns of substantive scientific interest. Instead, it is argued, serious scientists 

should base their inferences on more “formal” methods of hypothesis testing to discern 

signal from noise.  

In this paper I seek to overcome these reservations against data visualization. In particular, I 

introduce visual statistical inference, a new visual approach that was only recently developed 

in statistics and information visualization (Buja et al. 2009, Wickham et al. 2010). The basic 

idea of visual inference is that graphical displays can be treated as “test statistics” and 

compared to a “reference distribution” of plots under the assumption of the null hypothesis. 

The null hypothesis usually posits that there is no systematic structure in the data and that 

any pattern is really the result of randomness. If the null hypothesis were indeed correct, the 

plot of the true observed data should not look any different from the plots showing random 

data. If however the plot of the true data clearly stands out from the rest, this could be taken 

as a rejection of the null hypothesis of no structure. In other words, visual statistical 

inference brings the rigor of statistical testing to data visualization.   

 

This paper shares the general spirit of Jacoby (1997a: 12) who argues that “graphical 

approaches […] should be very useful in the social sciences, where the robustness 

characteristics of traditional statistical techniques often are pushed to their limits” (Jacoby 

1997a: 12) and Bowers & Drake (2005: 303) who state that given the many challenges of 

political science data (i.e. small N, non-stochastic data, see also Western & Jackman 1994, 

Stegmueller 2013) it is best to rely on “graphical presentations [...] rather than formal 

hypothesis testing.” But this paper goes a step further by showing that visualization and 
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statistical inference are not at odds with each other. Instead, it demonstrates how visual 

statistical inference merges statistical testing with data visualization and illustrates the 

application and benefits of this visual method by drawing on examples from political science 

research. The hope is to stimulate the use of graphical displays as analytical tools in political 

science by contributing to the exploding interest in visual methods and catering to 

discipline’s “need to do a better job of data visualization” (Alvarez 2016: 15).  

 

 

Visual Statistical Inference 

Exploratory data analysis, according to one of its founders “is about looking at data to see 

what it seems to say. It concentrates on […] easy-to-draw pictures. […] Its concern is with 

appearance, not with confirmation” Tukey (1977: V). Consequently, a criticism that 

frequently arises with data visualization is that it is merely an informal tool for exploration 

and that it lacks the rigor of formal tests found in confirmatory analysis or conventional 

statistical inference. Exploratory data analysis and graphical displays may thus give rise to 

an over-interpretation of patterns that are in fact due to mere randomness: “Humans’ 

pattern recognition skills are amazing and the source of great insights, but sometimes they’re 

too good. We are so adept at finding patterns that we sometimes detect ones that aren’t really 

there” (Few 2009: 139). This is where visual statistical inference steps in in and “allows us to 

uncover new findings, while controlling for apophenia, the innate human ability to see 

pattern in noise” (Wickham et al. 2010). In other words, visual inference brings formal 

statistical testing to data visualization.  

The key idea to overcoming the seeming opposition of exploratory and confirmatory analysis 

is in the realization that graphical displays can be considered as implicit comparisons to a 

reference distribution or a baseline model (Gelman 2003, 2004). For instance, any trend in a 

line chart is essentially an implicit comparison to a flat line or any pattern in a scatter plot 
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an implicit comparison to a random cloud of points. At the same time, a visual trend or 

pattern is considered “surprising” or “interesting” if compared to and contradicting implicit 

prior expectations. If we are able to make these implicit models explicit, we may formalize 

visual discoveries as any systematic difference to what we expected to see and the rejection 

of null hypotheses (Buja et al. 2009).  

 

The Logic of Hypothesis Testing 

 

Formal testing involves the comparison of a test statistic to its reference distribution under 

the assumption of the null hypothesis (cf. Gill 1999). If the test statistic is reasonably unlikely 

to have occurred under the null assumption, say p < 0.05, then the null hypothesis is rejected 

and one has a “statistically significant” result. These basic principles remain the same in 

visual inference – with the exception that the “test statistic” is now a graphical display of the 

data and the “reference distribution” made up of a collection of plots showing the null 

assumption. The “rejection” of the null involves a human viewer able to discern the true plot. 

This correspondence is illustrated in figure 2.  

 

Formal Test Visual Inference 

Null hypothesis 𝐻" Null hypothesis 𝐻" 

Test statistic 

𝑇	 = ℎ(𝒙) 

Visual feature in a plot 

 

Test: Reject? 

𝑇(𝒙) > 𝑐	? 

Human viewer: Discovery? 

 

Figure 2: The Correspondence of Formal Hypothesis Testing to Visual Inference. Adapted from Buja et al. 2009. 
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Plots as Test Statistics 

 

In visual inference plots take the role of test statistics. Using a graphical display as a “test 

statistic” in the sense of a data summary has several potential advantages over numerical test 

statistics (Anscombe 1973, Jacoby & Schneider 2010). First, in contrast to classical test 

statistics, graphs make little or no assumptions about the nature of the data such as their 

scale, functional form or distribution. Second, graphs can be used to describe complex data 

patterns for which simply no test statistic exists. Third, graphical displays of data retain more 

information about the data and may encourage further investigation by not only indicating 

if, but by also showing how the data deviate from the reference distribution. Of course, the 

choice of a particular graphical format depends on both the nature of the data and the pattern 

it is supposed to reveal. Line charts are commonly used to show time trends, bar charts to 

show the distribution over discrete categories and histograms for continuous variables. 

Scatter plots are incredibly versatile in not only revealing relations between two variables of 

any functional form, but also clusters, gaps and outliers in the data.  

 

 

Generating Reference Distributions Using Variable Permutations 

 

Visual inference is closely related to permutation tests in the way reference distributions 

under the null are generated (see figure 3). In permutations tests, on repeatedly permutes 

the “labels” of observations and calculates the test statistic under each of those 

permutations, resulting in the sampling distribution under the null and conditional on the 

observed data (Good 2005, Berry et al. 2016). The “labels” could indicate any attribute 

relevant to the analysis, such as treatment condition, time point or group membership. 

Under the null hypothesis, these labels are unrelated to the outcome of interest (i.e. it does 

not differ across treatment conditions, time or group) and therefore any random 

permutation would be equally likely. The only assumption needed for the re-labeling is that 
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the data are exchangeable under the null, i.e. their distribution remains the same whatever 

the particular labeling. The statistical significance of the observed test statistic can then be 

evaluated by comparing it to sampling distribution of the test statistics created by the 

random permutations.  

 

Constructing reference distributions using permutations is useful for at least two reasons. 

First, it is not restricted to large sample sizes and specific distributional assumptions 

concerning the outcome (such as normality). Instead, it is extremely flexible and can be 

applied in a wide range of different settings, which are typical in political science research 

(small N, sparse or ill-behaved data). Second, permutation produces an exact description of 

the sampling distribution under the null and does not rely on approximations. 

 

While for small N all possible permutations can be produced, for larger N one would choose 

a random subsample of all possible permutations using a Monte Carlo approach. Permutation 

tests ignore sampling variability in the data which is fine for many political science 

applications dealing with full population data. If sampling variability is an issue one could 

use a bootstrapping approach to building the reference distribution.  

 

While a simple model of independence or “no structure” is a natural choice in many 

situations of exploratory data visualization, it is also possible to construct reference 

distributions from more specific models. For instance, one could construct a reference 

distribution by simulating draws from a normal distribution. In a Bayesian context, one could 

simulate reference data sets by sampling from the posterior predictive distribution (Gelman 

et al. 2013, Lynch & Western 2004, Kruschke 2013).  
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Permutation Test Visual Inference 

Test statistic of true data 

𝑇	 = ℎ(𝒙) 

Plot of true data 

 

Test statistic simulated data 

𝑇- 	= ℎ(𝒙./-) 

Plot of simulated data 

 
Test statistic simulated data 

𝑇0 	= ℎ(𝒙./0) 

Plot of simulated data 

 

… … 

Test statistic simulated data 

𝑇1 	= ℎ(𝒙./1) 

Plot of simulated data 

 

 

Figure 3: The Correspondence of Permutation Testing to Visual Inference. Adapted from Buja et al. 2009. 
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The “Line-Up” as Visual Inference Tool for Political Research 

 

This section introduces “The Line-Up” protocol, an inferential process based on graphical 

displays of quantitative information that mimics conventional hypothesis tests. It was 

developed in the statistics literature by Buja et al. 2009 and introduced to the information 

visualization community by Wickham et al. 2010. Majumder et al. 2013 established the 

validity, refined the terminology and present ways to calculate p-values and the power of 

visual tests. Hoffmann et al. 2012 applied visual inference in the power evaluation of 

graphical designs, Chowdhury et al. 2015 in a large p, small N data problem of gene expression 

data, and Widen et al. 2016 in examples from climatology, biogeography, and health 

geography. To the best of my knowledge this approach has not been used in political science. 

 

The lineup is called “after the ‘police lineup’ of criminal investigations […], because it asks 

the witness to identify the plot of the real data from among a set of decoys, the null plots, 

under the veil of ignorance” (Buja et al. 2009: 4369).  In particular, this visual hypothesis test 

involves the simulation of m-1 null plots (for instance using variable permutations as 

explained in the previous section) and randomly placing the plot of the real observed data 

among them, resulting in a total of m plots. A human viewer is then asked to choose the plot 

that looks the most different from the rest. Ideally this human viewer is an impartial observer 

who has not yet seen the true plot before, such as a colleague, student or crowd worker (see 

below). If the test person succeeds and picks the plot showing the actual data, then this visual 

discovery can be assigned a p-value of 1/m. In other words, the probability of picking the true 

plot just by chance is 1/m. Setting m=20 and thus simulating m-1=19 null plots thus yields the 

conventional Type I error probability of 𝛼 = .05.  

 

We can further decrease the probability of making Type I errors by either increasing the 

number of null plots, m-1, or by increasing the number of observers, K.  For more than one 
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test person, picking the true plot under the null is a random variable, 𝑋, distributed as a 

binomial variable,  𝑋~𝐵𝑖𝑛𝑜𝑚=,-/@, with K trials and success probability 1/m. Thus the p-

value for a line-up with m plots and K (independent) impartial observers is (Majumder et al. 

2013): 

Pr(𝑋 ≥ 𝑥) = 1 − 𝐵𝑖𝑛𝑜𝑚=,-/@(𝑥 − 1) =GH𝐾𝑖 J K
1
𝑚L

M

K
𝑚 − 1
𝑚 L

=NM=

M/O

 

 

where x is the number of human viewers picking the true observed plot. In visual inference 

a type II error occurs if the human viewers fail to identify the true plot and thus to reject the 

false null hypothesis. The respective error probability is Pr(𝑋 < 𝑥). Majumder et al. (2013b) 

show that the power of visual test can be at least as good as the power of conventional test 

and even better under some circumstances. Of course, the true strength of visual inference 

lies in situations where no conventional tests exist. 

 

The “Line-up“ is further aided by general principles and methods of graphical displays that 

facilitate the comparison between the plots, most notably the idea of “small multiples” (Tufte 

1989). This refers to the careful arrangement of graphical displays of the same type, 

appearance and size that also have constant axis scales. In other words, single displays differ 

only in the data they present. While “small multiples” usually benefit hugely from a 

meaningful ordering of the plots, the central idea of the “line up” is of course the random 

arrangement of the null plots and the plot showing the real data.  How the arrangement of 

the total set of plots as well as how the plot type or format affect the efficiency of the Line-

up protocol is part of ongoing research (Hoffmann et al. 2012, Majumder et al. 2013).  

 

Needless to say the effectiveness of the “Line-up” also rests on properties of the individual 

graphical displays that make up the total set of plots. Here, the principles of good data 

visualization concerning the choice of graphical displays and their design, discussed in many 
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classic texts, apply (e.g. Cleveland 1993, 1994, Few 2009, Tufte 1984). The most important 

advice is arguably to increase the “data-ink ratio” by focusing on showing the data and 

reducing any auxiliary graph elements. In particular, plot annotations such as titles, axis or 

tick labels, and legends can usually be omitted.  

 

Figure 4 gives a first impression of how this inferential process works. Try for yourself: 

Which of the 20 histograms stands out from the rest? 

 

 

Figure 4: Line-up with 2O histograms. Which plot is the most different? 

 

In fact, none is the true plot. All 2o histograms show 100 random draws from a uniform 

distribution U(0, 1). However, this demonstrates how easy it is to over-interpret patterns that 

are in fact due to mere randomness. Buja et al. 2009 call this the “Rorschach protocol” and 

suggest it be used as a calibration exercise.   
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Examples from Political Science  

 

In this section I illustrate the workings of graphical inference by applying it to examples that 

face some of the methodological challenges found in political science research: a) tracking 

policy change over many countries and several time points using a heat map, b) studying 

context effects with few context units using a scatter plot of regression results, c) identifying 

clusters in data using a scatter plot with colored dots and d) finding spatial patterns in a dot 

map.  

 

For each example, I used a small sample of N=9 political scientists2 as well as a small sample 

of N=10 crows-sourced respondents3 as impartial observers. In addition to achieving more 

reliable visual inference, this allows me to see to what degree experts differ from non-experts 

in their visual pattern finding skills. Using an online survey tool, respondents were presented 

with a total of five different line-ups (four “real” line-ups plus the “Rorschach test” presented 

in figure 1) and asked each time to pick the plot, which is “the most different.” While I 

randomized the order in which the line-ups where shown, the position of the true plot among 

the null plots was kept constant. Respondents could choose the plot they thought to be the 

most different by directly clicking on them. On average respondents took about three and a 

half minutes (221 seconds) to complete the task, although the crowd-workers were almost 

significantly faster than the political scientists (167 vs. 281 seconds). The results are 

documented in table1 and I will refer back to them during the discussion of each line-up. 

 

                                                
2 I asked 10 colleagues at different career stages (PhD students, postdocs as well as assistant and full professors) 
to participate. All of them have a strong quantitative research background and use plots in their daily work. 
Still, several mentioned that it was „hard“ to pick the true plot – which is a good thing and demonstrates that 
this exercise is not trivial. 
3  I used the commercial crowdsourcing platform Microworkers which is similar to Amazon’s MTurk. Each 
worker was paid 30 cents for completing the task. The overall cost for this visual inference test therefore 
amounts to three US dollars.  



 13 

Table 1: Experimental Results: Correct Identification of True Observed Plots 

 All  
(N=19) 

Political scientists 
(N=9) 

Crowd Workers 
(N=10) 

 # %  # %  # %  

 

7 37 6 67 1 10 

 

0 0 0 0 0 0 

 

18 95 9 100 9 90 

 

10 53 7 78 3 30 

 

 

a) Time Series Cross Sectional Data: Blasphemy Legislation Across the Globe 

 

A very common data structure in political science is time series cross sectional (TSCS) data 

that provide information on several states over a period of several years. For this example I 

draw on a TSCS dataset of the Religion and the State Project (Fox 2008) which provides data on 

religious policy by the state for 177 countries across the globe and for the period 1990-2008. 

For this application I am interested in blasphemy laws that protect religious figures and 

groups from insulting and discriminatory public speech and in particular how this type if 

regulation has changed over the time period. The natural null hypothesis therefore simply 

states that there was no change over time. 

 

The visual “test statistic” used here is a heatmap that shows the number of blasphemy 

regulations (0-3, where darker red means more regulation) across countries (y-axis) and 

years (x-axis). Heat maps are a good alternative to line charts when the outcomes are discrete 

and thus over-plotting becomes a serious concern in the visualization of comparative trends. 
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The heat maps were sorted across countries according to the amount of regulation. To 

generate the “reference distribution” under the null, I generated 19 random permutations of 

the columns of the heat map. This is equivalent to randomly and repeatedly scrambling the 

year variable in the data set and thus breaking any dependence between time and blasphemy 

laws. Under the null the year should not matter for regulation and each permutation would 

be equally likely. The 19 null plots, i.e. the 19 heat maps of the permuted data, where then 

randomly arranged in a 4 x 5 matrix, that also includes the true heat map of the actual data 

(see figure 5). Can you detect the true plot? 

 

 

Figure 5: Line-up of heat maps for the change in blasphemy laws across 177 countries and the period 1990-2008 . 

 

As it turns out, only 37 percent of the human observers in my sample (67 percent of political 

scientists and only 10 percent of crowd-sourced respondents) correctly identified the true 

heatmap.4 Yet, even that only 7 out of 19 respondents would pick the true plot just by chance 

                                                
4 The true heat map is the one in the fourth row and first column. 
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is extremely unlikely (p≈.00002). Thus, we may reject that the null hypothesis that here is no 

change in blasphemy laws in our plot. 

 

b) Contextual Effects: Education and Political Participation in the US 

 

The next empirical example follows Bowers and Drake (2005) and looks at the relation between 

education and political participation in the US and how this individual level relation is 

conditioned by state-level educational context. A typical concern with this kind of analysis is that 

the number of contextual units is too small to rely on asymptotic assumptions of classical 

statistical inference. Therefore, Bowers and Drake (2005) suggest visual methods instead of 

formal tests. Yet their visual inference remains purely informal: “when we detect a feature with 

our eyes, we will try to only report it as a feature rather than noise if we feel that any 

reasonable political scientist in our field would also detect this feature“ (Bowers & Drake 

2005: 17). Applying the visual inference approach introduced in this paper, we can swap our 

assumptions concerning the reasonableness of political scientists for a formal visual test. The 

null hypothesis in this example is that there is no relationship between the educational 

context in a state (i.e. the share of highly educated) and the effect of individual education on 

political participation.  

 

The “test statistic” is a scatter plot version, where each dot is a state-specific individual-level 

effect of education on participation which is plotted along with vertical lines for the 95% 

confidence intervals. The size of this individual-level effect is on the y-axis. On the x-axis is 

the share of highly educated in the state. In addition, the plot includes a non-parametric 

scatter-plot smoother to help reveal any relation between state-level feature and individual-

level effect. To construct a “reference distribution” under the null, I randomly re-shuffle the 

state-level education variable and create 19 new data sets that will have no systematic 

relation between this variable and the coefficient by repeating this process 19 times. Figure 
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6 below shows the 19 null plots based on this simulated data along with the true plot. Which 

one stands out? 

 
 
 

 

Figure 6: Line-up for the relation between the individual education effect on political participation (y-axis) and state-level 

education (x-axis).  

 

No respondent in my sample – neither political scientist, nor crowd worker – managed to 

identify the plot showing the real data.5 With the resulting p-value of one, we clearly cannot 

reject the null hypothesis that individual educational effects are unrelated to state-level 

education.  

 

 

 

 

                                                
5 The true plot is in row three and column two. 
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c) Clustered Data: World Values Survey Cultural Map  

 

The next example comes from political culture research and is inspired by the famous World 

Values Survey Cultural Map which displays value orientations related to human development 

and democracy for a range of societies across the globe (see for instance Inglehart & Welzel 

2005). The „map“ is really a scatter plot that does not show geographic, but cultural proximity 

by plotting countries along two value dimensions derived by factor analysis. The dimension 

of so-called survival vs. self-expression values is plotted on the x-axis and the dimension of 

traditional vs. secular-rational values on the y-axis. In addition, countries a colored according 

to their cultural zone or civilizational heritage: African, Islamic, Latin American, South Asian, 

Protestant European, Catholic European, Orthodox, and English Speaking.  

 

On finding of theoretical interest suggested by the plot (and indeed the literature, see Welzel 

et al. 2003), is that cultural zones form more or less distinct clusters with similar value 

orientations: culture matters. The question is whether this pattern is really systematic? The 

null hypothesis in this case would be that there are in fact no such civilizational clusters and 

that societies belonging to the same cultural zone do in fact not show similar survival vs. self-

expression and traditional vs. secular-rational values. The reference null distribution can be 

constructed by a simple random permutation of the vector of cultural zones and thus the 

color of the dots in the scatter plot. Figure 7 presents 19 such null plots along with the true 

data plot.  Can you pick the true cultural map? 
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Figure 7: Line-up for the relation between survival vs. self-expression values (x-axis) and traditional vs. 

secular-rational values (x-axis). 

 

The true plot clearly stands out.6 Indeed, all of the political scientists and 90 percent of the 

crowd-sourced respondents correctly identified the observed cultural map, yielding a p-

value of essentially zero. This allows us to reject the null hypothesis of no cultural value 

clusters around the world. 

 

 

d) Spatial Data: Interviewer Behavior in the German Longitudinal Election Study 

 

The final example comes form the German Longitudinal Election Study (GLES) a large-scale 

survey project of voter behavior based on face-to-face interviews of the general population 

(Schmitt-Beck et al. 2009). The involved researchers were worried that some of their 

                                                
6 The true cultural map is in row two and column four. 
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interviewers might selectively contact households, e.g. avoid low income areas and/or areas 

with high shares of foreigners where it could be hard to obtain successful interviews. The 

final methodological report provided by the polling firm did not give any information on this 

problematic interviewer behavior. What would we expect to see if interviewers indeed were 

to avoid certain areas? Clearly, selective interviewer behavior would show up as some kind 

of spatial pattern: interviewers would only visit and complete interviews in certain areas and 

avoid others. Consequently, the null hypothesis in this example states that there is no spatial 

pattern. Re-shuffling the variable vector for interviewer behavior in a data set with 

household addresses 19 times easily creates the respective null distribution. It breaks its 

relation to the location of sampled households given by longitude and latitude. A suitable 

“test statistic” would be a dot map which indicates the locations where interviewers failed to 

make contact. Figure 8 shows the line-up for the dot maps of interviewer behavior. Which 

one is the true map? 

 

In my test sample roughly half of the impartial observers (53 percent, political scientists: 78 

percent, crowd-workers: 30 percent) correctly identified the dot map showing the true 

interviewer behavior.7 This yields a p-value very close to zero and again suggests that we can 

reject the null that there is no spatial pattern in interviewer behavior.  

 

                                                
7 The true dot map is in row three and column three. 
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Figure 8: Line-up for the spatial pattern of interviewer behavior (“no contact”) in the German Longitudinal 

Election Study (GLES). 
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Conclusion 

 

This paper introduces visual inference to political science and offers a remedy to the criticism 

frequently voiced against data visualization and exploration: that it may give rise to an over-

interpretation of random patterns. By treating graphical displays as "test statistics" and 

comparing them to a “reference distribution” of plots under the assumption of the null, 

visual inference helps us answer the question “Is what we see really there?” By so doing, it 

seeks to overcome long-standing reservations against visualization as merely “informal” 

approach to data analysis and the fear that beautiful pictures may in fact not correspond to 

any meaningful patterns of substantive scientific interest.  
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